Techniques for Imaging Ca2+ Signaling in Human Sperm
نویسندگان
چکیده
Fluorescence microscopy of cells loaded with fluorescent, Ca(2+)-sensitive dyes is used for measurement of spatial and temporal aspects of Ca(2+) signaling in live cells. Here we describe the method used in our laboratories for loading suspensions of human sperm with Ca(2+)-reporting dyes and measuring the fluorescence signal during physiological stimulation. Motile cells are isolated by direct swim-up and incubated under capacitating conditions for 0-24 h, depending upon the experiment. The cell-permeant AM (acetoxy methyl ester) ester form of the Ca(2+)-reporting dye is then added to a cell aliquot and a period of 1 h is allowed for loading of the dye into the cytoplasm. We use visible wavelength dyes to minimize photo-damage to the cells, but this means that ratiometric recording is not possible. Advantages and disadvantages of this approach are discussed. During the loading period cells are introduced into an imaging chamber and allowed to adhere to a poly-D-lysine coated coverslip. At the end of the loading period excess dye and loose cells are removed by connection of the chamber to the perfusion apparatus. The chamber is perfused continuously, stimuli and modified salines are then added to the perfusion header. Experiments are recorded by time-lapse acquisition of fluorescence images and analyzed in detail offline, by manually drawing regions of interest. Data are normalized to pre-stimulus levels such that, for each cell (or part of a cell), a graph showing the Ca(2+) response as % change in fluorescence is obtained.
منابع مشابه
Techniques for Imaging Ca2+ Signaling in Human Sperm Katherine Nash1, Linda Lefievre2, Ruben Peralta-Arias1, Jennifer Morris1, Aduen Morales-Garcia1, Tom Connolly2, Sarah Costello1, Jackson C. Kirkman-Brown3,
Fluorescence microscopy of cells loaded with fluorescent, Ca2+-sensitive dyes is used for measurement of spatial and temporal aspects of Ca2+ signaling in live cells. Here we describe the method used in our laboratories for loading suspensions of human sperm with Ca2+-reporting dyes and measuring the fluorescence signal during physiological stimulation. Motile cells are isolated by direct swim-...
متن کاملThe Effects of EGTA on the Quality of Fresh and Cryopreserved-Thawed Human Spermatozoa
Background: Sperm cryopreservation-thawing process has damaging effects on the structure and function of sperm, namely cryoinjury. Calcium overload has been reported as a postulated mechanism for sperm damage during the first steps after thawing. This study was designed to assess the intracellular calcium (Ca2+i) after cryopreservation and to clarify the role of a calcium chelator ethylene glyc...
متن کاملSpatiotemporal dynamics of intracellular calcium in the mouse egg injected with a spermatozoon.
Oscillatory rises in intracellular Ca2+ concentration ([Ca2+]i) are the pivotal signal in the fertilization of mammalian eggs. The spatiotemporal dynamics of [Ca2+]i rises in mouse eggs subjected to intracytoplasmic sperm injection (ICSI) were analysed by Ca2+ imaging and compared with those subjected to in-vitro fertilization (IVF). The first Ca2+ transient occurred 15-30 min after ICSI in mos...
متن کاملSperact induces calcium oscillations in the sperm tail
Sea urchin sperm motility is modulated by sperm-activating peptides. One such peptide, speract, induces changes in intracellular free calcium concentration ([Ca2+]i). High resolution imaging of single sperm reveals that speract-induced changes in [Ca2+]i have a complex spatiotemporal structure. [Ca2+]i increases arise in the tail as periodic oscillations; [Ca2+]i increases in the sperm head lag...
متن کاملAcetylcholine causes an increase of intracellular calcium in human sperm.
Sperm nicotinic acetylcholine receptors (nAChRs) can influence motility and the initiation of acrosome reaction (AR). We report that AR initiation by acetylcholine (ACh) in capacitated human sperm requires both Na+ and Ca2+ in the external medium. Pre-incubation with 50 microM 3-quinuclidinyl benzilate (QNB) or 50 nM strychnine failed to inhibit the ACh-initiated AR, demonstrating that muscarin...
متن کاملThe Bimodal Nature of Neurovascular Coupling
Neurons, by virtue of their complex and continuously changing signaling roles in brain, must be able to regulate access to energy in order to maintain their ability to communicate meaningful frequency-encoded information. This is accomplished by release of neurotransmitters to astrocytes that in turn signal the vascular system to increase cerebral blood flow (CBF). This process has been termed ...
متن کامل